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The Construction And Asymptotic
Behaviour Of Some m-Dimensional

Simple Epidemic Models.

by

Naftali A. Langberg

ABSTRACT

A population of susceptible individuals exposed to in contagious diseases

is considered. The progress of this epidemic among the individuals is modeaed

by an m-dimensional stochastic process. The cumpcnents of this process repre-

sent the number of infective individuals with the respective diseases at time t.

A class of m-dimensional stochastic processes is constructed. These

processes describe the progress of the epidemic models considered in the sequel.

Exact and approximate formulas for the joint and marginal state probabilities

of these models are obtained. It is shcwn that the approximate formulas are

relatively simple functions of time while, the d rivations of the exact for-

mulas involve tedious computations. The results cbtained in the paper are

applied to a sample of examples.

Key words: m-dimensional simple epidenics, exponential, negative bino-

mial and Poisson random variables, stochastic processes and convergence in

distribution.
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1. Introduction And Summary.

In a simple epidemic situation we assume that a population of suscepti-

ble individuals (susceptibles) is exposed only to one contagious disease

(disease) [Bailey (1975)]. However, frequently susceptibles are exposed

simultaneously to more than one disease, as is the case with different

types of flu. In this paper we consider a population of susceptibles

exposed to m diseases, m = 1, 2, ..... We say that this population undergoes

an m-dimensional simple epidemic if the iollo1ing six assu;naptions hold.

(1.1) At each point in time at most one susceptible contracts a disease.

(1.2) Each susceptible constracts at most one disease.

(1.3) Once a susceptible contracts disease r, r = 1, ..., m, he remains

contagious for the duration of the epidemic.

(1.4) An infective individual (infective) with disease r, r = 1, .., m, can

only transmit that disease.

(1.5) All interactions between a susceptible and an infective with a specified

disease are equally likely to result in an infection.

(1.6) Individuals neither join nor do they depart from the population.

Note that for m = 1 the m-dimensional epidemic reduces to the univariate

simple epidemic.

Let T denote the first time we have at least one infective with each

of the various diseases, and n, finite or infinite, the number of suscepti-

bles at time T0. We describe the progress of m dimensional simple epidemics

among susceptibles by an m-dimemsional stochastic process

X(t) X n,l(t),...,X n,m(t)], tE[0 ,-). The components ofX n(t) represent

n Il nIm
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the number of infectives with the respective diseases at time t measured

from T0. In Section 2 we construct a variety of m-dimensional stochastic

processes. These processes describe the progress of the epidemic models

considered in the sequel.

The computation of state probabilities in epidemic models is of major

interest to researchers. In Section 3 we derive formulas for the joint and

marginal state probabilities: P n,(t) = P{Xn(t)-X (O)=k), and

P n.ktr(t) = P(Xn,r(t)-Xnr(O)=k), where k = [ki,.. km], k, ki, .... kmc{0,,

r - 1, ..., m, and te(O,-). We calculate these formulas without the tradi-

tional use of the differential equations associated with the state probabil-

ities. This is done by utilizing a formula for the distribution function

(dAf of a sum of independent exponential random variables (rva's) given by

Billard, Lacayo and Langberg (BLL) (1980).

The for :: for the state probabilities obtained in Section 3 are

rather complicated. To overcome this deficiency we derive relatively simple

approximations to the state probabilities when the initial number of suscep-

tibles: n, is sufficiently large. To be more specific some notation and a

definition are needed. Let X(t), X (t), be m-dimensional stochastic
-n

processes, X(t) = Lr-l X ,r(t)' Xn(t) * 1 Xn r(t)' the total number of

infectives at time t measured from TO, and let Y(t) be a nonnegative rv,

tEEO,'), n - 1, 2,....

Definition 1.1. Let n = 1, 2, ... , -. Then the transition rate of

disease r, r m 1, ... , m, at time t, t CO,m) is given by

ti. hlP(X n,r(t+h) - X n,r(t) - lx n(t)), and is denoted by R(X (t),r).

AA
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In Section 4 we assume that for all k = [kI ... km], and given s, OE(O,-)

(1.7) tim X n (0) = XM(O)

(1.8) tim R(Xn(0) k,r) = R(X.(O)+k,r), r , .. m,

(1.9) E{Y(s))e < -, and that

(1.10) for xc[X.(O),-) and almost all nE{l,2 ...., P{Xn (s)x} < P{Y(s)axl.

We show that under Conditions (1.7), (1.8), X n(t) converges in distribution as

n - - to X(t) for all ti(O,-). Using this result we can approximate P n,k(t),

and Pn,k,r(t) by the respective state probabilities of the process X(t). Further,

we show that tim. E{X (s)) E{X (s)), and that kim E{X (S)} E{X, (s)1
II, nfl~ n,r r

r = 1, ..., m, provided Conditions (1.7) through (1.10) hold. Note that if

Bc[2,-), we can approximate EX n,r(s), EXn (s), Var{X ,r(s)), and Var{Xn (s), by

the equivalent counterparts of X (s).

BLL(1979) consider a special class of m-dimensional simple epidemic models

and name them the symmetric m-dimensional simple epidemics. We say that a pop-

ulation exposed to m diseases undergoes a symmetric m-dimensional simple epidemic

if Assumptions (1.1) through (1.6) hold and if the transition rate of disease r,

r = 1, ... , m, at time t, te[O,-) is given by:

n- I OX (t)(n+X (0)-X (t)), n = 1,2,...,
(1.11) R(X (t),r) = n n,r n,r n,raX ,Ct) , n = ,

where at(O,-). The transition rates given in Equation (1.11) for the case n = -

depend only on the number of infectives with the respective diseases. This

special structure of the transition rates is shared by a variety of models as

is shown in the last section. In Section 5 we assume that
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(1.12) R(X (t),r) = A(X rCt) ,r), r = 1, ... , m, tc[O, ),

where A(k,r), k = x r(O), X (0) + 1, ... , r = 1, ... , m, are sequences

of positive real numbers. We prove that

(1.13) for r = 1, ... , m, k = 0, 1, ... , and tc(O,w),

P{X , (t)-X. (O)>k) =

=P{[i= [A(X (0)+q-l,r)-i U! t}
q 1 ~,r q

where U1' 2' ..., are independent indentically distributed (iid) exponential

rva's with mean 1. Further we show, as expected, that

(1.14) for all tc(O,-), the components of X(t) are independent.

These results are applied in Section 6 to simplify the approximations to the

state probabilities and to related moments. Note that under Condition (1.12)

the processes X (t), ..., X"m(t), describe the progress of m independent

univariate simple epidemic models among susceptibles in closed populations

of infinite sizes.

In Section 6 we apply the theory developed in the previous sections to

some classes of m-dimensional simple epidemics, and other models in Epidemiology.

OI



2. Model Construction.

In this section we construct m-dimensional stochastic processes. These

processes describe the progress of m-dimensional simple epidemics in a pop-

ulation of a finite or infinite number af susceptibles.

First, we introduce some notation. Let N(n) - n + I for n < -, and

* * for n • *, and T 1 5 k < N(n), the kth interinfection time defined as

the time that elapses between the X n(0) + k - 1 and the Xn (0) + k infection.

Further, let Ek 1 < k < N(n), be a rva assuming values in the set {l,...0m},

and E - 0. The rva tnk' 1 - k c N(n), designates the disease responsible

for the X n (0) + k infection. Finally, let I be the indicator function,

SnO ,Snk Wql Tn , and S nN(n= -. The rva S 1 k <q 1 n qn,k' 1 N n)

describes the time measured from T. until the X n(0) + k infection. In par-

ticular N(n)T represents the duration time of the m-dimensional simple
q=1 n,q

epidemic.

Note that for 0 < k < N(n), r a 1, ... , m, and tc(0,m), the following

event equality holds.

(2.1) (Xn,r (t)-Xn,r (0)=k) -

k~q<N(n) Sn qft<S nq+l ' II nj~r)-k)"

Thus, to construct tho process n(t) if suffices to determine te df's of the

random vectors (rye's) ET n,qn,qql,...,k], 1 A k < N(n). Next we determi..-

the df's of these rye's. We need some more notation. Let Jnkr' be the

index set of all infectives with disease r at time T0 * Sn,k.l, and

C " Xn (0) + ik-ll' I r (Ck~
. Xn,'O .q=0 nqr), 1 • k < N(n), r 1 1, ... m. The rva Cnkr

4WIM_
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represents the number of infectives with disease r at time T. + Sn,k_1 . Fur-

ther, let p(n,k,gr), 1 -< k,q < N(n), r = 1, ... , m, be positive real numbers

and Tn,i, k , i = 1, ... X n(0) + k - 1, 1 < k < N(n), be rva's defined on a

common probability space. The rva Tn,i,k describes the time measured from

the X n(0) + k - I infection until the it h contagious individual causes the

X n(0) + k infection. Throughout we assume that

(2.2) the conditional rva's {Tni~ kn,00..... n,k-I 1

i = 1, .... Xn (0) + k - 1, 1 < k < N(n), are

independent exponentially distributed, and that

(2.3) E{Tn,i,k'kn,O' . , n,k-l1 =
-I

= 1 (n,k,Cn,kr,r), icJn,k,r, 1 < k < N(n), r = 1, ... , m.

We are ready now to determine the df's of the rye's ET n,q,&n,,q =l,...,k],

1 ! k < N(n). First, we determine the df's of the rye's [&n,l,..., n,k] ,

1 S k < N(n). We need the following.

Lemma 2.1. Let us assume that Conditions (2.2), (2.3) hold, let

r = 1, ... , m, and I r k < N(n). Then

(2.4) P{t kmr l cn,0' ... n,k-1 )U

=n,k,r nkn,k,r'r 1-l in,k,tv (nkCn,k,tl) '

Proof. Note that the event (Cn,kur) is equal to

(min ~ik: ilJ n <min(T ~ ic U Jn k, }). Consequently Statement (2.4)
n~k~r n~i~k t-1 ~,

O4r

follows by Conditions (2.2), (2.3) and simple integral evaluations. II

Note that Equation (2.4) determines the df's of the rve's [En,l,..., n,k ] ,

I I k < N(n). Next, we determine the df's of the conditional rye's

UTn,qlcn,o ,.n,q.1), q a l,...,k], I s k < N(n).

6.h



7

Lemm- 2.2. Let us assume that Conditions (2.2), (2.3) hold. Then

the conditional rva's {Tn,kk n,0 .... n,k-l } , 1 5 k < N(n), are indepen-

dent exponentially distributed with means equal respectively to

[ rm__Cn,k 'r (ii,k,C r) ]-i.

Proof. Note that Tnk = mi::{ n,i,k: i = 1,...,X n(0)+k-l, 1 - k < N(n).

Cor.sequcntly th- result of thc lt.t;zna follows by Conditions (2.2), (2.3) and

soma simple prpe.rt.es of cx~oncntini rva's. 11

Clearly LeL~mas 2.1 and 2.2 togethcr e~teroine the df's of the rye's

ET n,q, nqq=l,...,k], --- k < N(n).

Finally, we show that the tiansition rates of an m-dimensional simple

epidemic, .s e:pected, determine uniqucl.y the epidemic. We need the followir-

lemma.

Ler,zma 2.3. Let u- assiu-.o that Conditions (2.2), (2.3) hold. Then

R(X (t),r) = X (t)l(n,X (t),X (t),r), r = 1, ..., m, tE[O,).
ii i~r n n,r

Proof. The result of the lemma f -  by the mcmoryless property of

exponential r.;a's [Barlow, Proschan (197S), p. 56J; Equation (2.1) and

Conditions (2.2), (2.3). 11

Consequently Le':a 2.3 and Condition (2.3) we obtain for icJ n,k ,r,

1 k < Mi(n), r = I, ... , , that

(2.5) E{ n,ikkn,O"* "An,k-I}

n,k,r [ .n,k,l''...C n,k,"

Thus, clearly m-dimensional simple epidemic models are determined by their

transition rates.



3. Formulas for the State Probabilities.

Let k, ki .... k mE{O,...,n, n = 1, 2, ... .k = [k1,...,k 3,m m

S , and , 2 .. , be positive real numbers.

This section contains formulas for the joint and marginal state prob-

abilities: P nk(t), and Pnkr (t), r = 1, ... m tE(O,-). These formulas

are calculated without the traditional use of the differential equations

associated with the state probabilities. Rather, we utilize an available

formula for the distribution function of a sum of independent exponential

rva's. For the sake of completeness we present this formula.

Theorem 3.1. [BLL (1980), Theorem 23. Let M be a positive integer,
I m 6 jq+ 1

and tM(j) =. , j = M, M+l ..... Then for tE(0,®)
jl+...+jM=j q=l

(3.1) Pip- eq'u q5tjIne()t25/i!.

To aid in computing the joint and marginal state probabilities we

introduce the following notation. Let Z(k) = [0,...,k], 0 =0,Z1 ... ,k{l,..,m},

B(k) = {_(s(k)):J=( _ I(tq=r)=kr ,r= l,...m), and A(r,j,k) = {Z(j):=OI(e=r)=k},

j = k, k+l,...

By Equation (2.1) we obtain that for tE(O,=)

(32 ~)= [P(S t<Sn  .~n~=Zq=0. .,s (kJ}-
(3.2) Pn,k(t) £_(s(k)) Sn,s (k) n,s (k)l In,qq

*P( n,=,qfO,.. .,s(k)1I(t(s(k))eB(k))], and that for r = 1, ..., m

(3.3) P nkr (t) _s k Ej)P{S jt<S ,e= O,...,j)-

.P(&n,etee= n-O,...J)I(t(j)-EAr,j,k))e.

Thus, to compute P nk(t) and Pnk,r(t) it suffices to evaluate P{& n,qf,q=O,...,k),

and P(S n,kt<S n,klF& [n,q't ,q=O,... ,k).
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Now, we present formulas for these probabilities. Let

Dk (t(k),q) = X (0) .q-I( lj=r), and

n(n,k,t(k),q) = 11l(n,q,Pn,k,r(t(k),q),r), q = 1, ..., k + 1. First, by

Statement (2.4)

(3.4) P{ =,=0 ... ,k}
n,q q
k I m I(q=r)

=qfl [{n(n,k,t(k),q)} Ei {v(n,q,P n,k ,r ((k),q,r)} q
q=l r=-

Next, let fk(el'... ,8,t) be the density function of the rva q= le U. Then

for k = 1, 2, ... , t E(O,-)

( k <Ut<.k+le-lu
(3.5) P{ =qo Uq q=L q q

t-°k (t-u) k
ft= k+1 ( f ... ,k,u)du = - f(0, ... ,k+Pe 't).

0 ol' k k+l k'. 1

Thus, by Lemma 2.2 and Theorem 3.1

(3.6) P{Sn,k t<Sn,k+l In,q=/q=O....,k} =

e-rn(n,k,(k),)t k 0

n
[n(ln+j-ltJ [J + ' +  n ql-

Vnl. II {n(n,k,Z(k),q) jq+ 1  k n
j=n j! l".+n~ q=l

-I ®+(-I) k + j t j [jl+ ~=
) j=k i (j-1)! l "'

k+l j +1
11 {n(n,k,t(k),q) 1 < k < n.

q=l

Consequently, the formulas for the joint and marginal state probabilities

can be obtained from (3.2) and (3.3)by substitution. Note that, as expected,

the exact formulas for the joint and marginal state probabilities are rather

complicated.
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4. The Asymptotic Approximations.

In this section we present the asymptotic approximations of the joint

and marginal state probabilities and of some related moments. All limits are

calculated as n - =. First, we show that under Conditions (1.7), (1.8), X (t)--n

converges in distribution to X0 (t) for all t E(0,"). Then we prove that

Zim E{X(s)) = E{X (s)}, and that tim E{X (s)} E{X (s)}a for r 1, ... ,

provided Conditions (1.7) through (1.10) hold.

To establish the convergence of X(t) to X (t) we need the following two

lemmas.

Lemma 4.1. Let us assume that Conditions (1.7), (1.8) hold, let

k = 1, 2, ... , and Z "''' {. Then

(4.1) tim P{n =t ,q=l,... k) = P{JO q=t,q=I,...,k}.
n,q q ~,q q

Proof. Let £0 = 0. Then P{NE n,q=qq=l,...,k} =

k
q : P{E n,q= q n,j =Zj j=O,...,q-l1. Consequently Statement (4.1) follows by

Conditions (1.7), (1.8), and Statements (2.4), (2.5). II

Lemma 4.2. Let us assume that Conditions (1.7), (1.8) hold, and let

k = 1, 2, ... .. Then the conditional rva's {S n,kln~q q=0,...,k-1) converge

in distribution to the conditional rva (S k , q=0i...,k-l}.

Proof. To prove the result of the lemma it suffices, by the Cramer-Wold

device [Billingsley (1968), p. 49], to show that the conditional rye's

{ETn,1 ,...,T n,k]ln,q0q-O,...,k-1} converge in distribution to the conditional rye

(rT. l,...,T k q=Z,q=O,...,k-l). The preceeding statement follows by

Conditions (1.7), (1.8), Lemma 2.2, and Statement (2.5). ii

-A,
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We are ready now to show that X (t) converges to X ,(t).-n

Theorem 4.3. Let us assume that Conditions (1.7), (1.8) hold and let

t F(0,®). Then the rye's X (t) converge in distribution to the rye X.(t).

Proof. Note that X (t), X (t), nt = 1, 2, ... , are discrete rye's. Thus,

[Billingsley (1968), p. 161, to prove the result of the theorem it suffices to

show that for all k = [kI ... k i], ki ... P k m E{{0,1 ....

(4.2) Zim P{X (t)-X (0)-k = P{X(t)-X,(0)=k).n -n -

Statement (4.2) follows by Equation (3.2), Conditions (1.7), (1.8) and Lemmas

4.1, 4.2. 11

By Cramer-Wold device and Theorem 4.3 we obtain that

Corollary 4.4. Let us assume that Conditions (1.7), (1.8) hold, let

t E(O,), and r = 1, ... , m. Then (i) X (t) converges in distribution to

X ,r(t), and (ii) X n(t) converges in distribution to X®(t).

Clearly Theorem 4.3 and Corollary 4.4(i) insure that the joint and marginal

state probabilities: P n,k(t), Pn,k,r (t), can be approximate by P k(t), P (,krit)'

respectively.

Now, we establish the moments convergence. First, we show that

Zim E{X n(s) = E(X (s)}.

Theorem 4.5. Let us assume that Conditions (1.7) through (1.10) hold.

Then Zim E{X (s) 1 8 .

Proof. Note that E{X n(s)) B. Y-'P{Xn(s)>yldy Thus, the result of the
0

theorem follows by Corollary 4.4(ii), Conditions (1.9), (1.10) and the

dominated convergence theorem [Loive (1963), p. 125). II

Next, we show the convergence of E{Xn,r(S))8

k
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Theorem 4.6. Let us assume that Conditions (1.7) through (1.10) hold,

and let r = 1, ..., m. Then tim(X (s)} : E{X (s)}
n,r ,r

Proof. Note that E{X n,r(s)}l =f'y0- 1 P{Xn (s)>}dy, and that for
0

yc(--,®), n = 1, 2, ... , P{X n,r(S)>y} P{Xn (s)>y). Thus, the result of the

theorem follows by Corollary 4.4(i), Conditions (1.9), (1.10), and the

dominated convergence theorem.

Note that if Condition (1.9) holds then E{Y(s)}6<- for 6E(-',6J. Now,

assume that Conditions (1.9), (1.10) hold for all sE(O,-) and some 6E[2,-).

Then we can approximate EX n(t), EX n,r(t), Var{X (t)}, and Var{X n,r(t)} by the

equivalent counterparts of X(t) for all tE(O,-), and r = 1, ... , m.



5 So me SpcciaI ::-'I:siona l SiMrlc ipideni.

Let X (t), tE[O,-), bs an m-dimensional stochastic process describing

the progress of an m-dimonsional simple epidemic among infinitely many

susceptibles. We assume that the transition rates of X,(t) depend only on

the number of infectives with the respective tiseases. Under this assumption

we identify the distribution functions of X.j (t), ..., X. (t), and show, as

expected, that X(t) has independent components for tc(O,-). These results

are then used in Section 6 to obtain relatively simple approximations to the

state probabilities and to some relatvd moments of certain classes of

m-dimensional simple epideics.

We need some notation. Let Z (t), tELO,-), r = 1, ..., m, be independent

stochastic processes assuing values in the sets {X.r(O),X.r(O)+l....},

respectively and determined by the following two equations.

(5.1) Zr(O)= X (0), r=l ...,n.
r

(5. 2) P{ Zr(t -] -"

= P{Iz[A(Zr(O)+q-l,r) ]-IU 5t}

t6(O,-), r = 1, ..., m, k 1, 2.....

Further, let Z(t) -Tm Z (t), Wo(t) = 0, Wk(t) = Inf{t: Z(t+ k'lw )-Z(O)=k},
q=O q

te(O,w), and D1 - _ Wq, k = 0, 1, .... Finally, let Ak, k = 1, 2, ..., be

rva's assuming values in the set {l,...,m}, determined by the following set

equality

(5.3) (Ak-r) = (Z(Dk) - ZZ(Dk _) = 0,

Z r(D k) -Zr (D k-1) 1 , r #ll..mr 1I , m.
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The processes Z (t), ..., Z (t), describe the progress of m independent simple

epidemics among susceptibles in closed populations of infinite sizes. Assume

we observe the progress of these m independent simple epidemics. Then Z(t)

represents the total number of infectives at time t, Wk(t) models the time

that elapses between the Z(O) + k - 1 and the Z(0) + k infection, Dk describes

the time until the Z(O) + k infection, and Xk indicated the simple epidemic

responsible for the Z(O) + k infection.

In this section we assume that Condition (1.12) holds, and prove that the

processes X.(t) and Z(t) = [ZI(t),... ,Zm(t)], t[O,-), are stochastically equal.

In particular we obtain Statements (1.13), (1.14).

Let t(O,®), k = 1, 2, ..., and r = 1, .... m. Then the following set equality

holds.

(5.4) (Zr (t)-Zr (0) k) =

= U (Dq-t<D q I(A =r)ek).
q=k qq+1' 3 1 j

By the set Equalities (2.1), (5.4), the processes X (t), Z(t) are determined

by [T , q=l,2 .... 1, and EW ,,q=l,2,...], respectively. Thus, to prove
~,q A ~ q q

that j (t), Z(t) are stochastically equal it suffices to show that

[T ,'C. ,q=l,2,...], EW , ,q=1,2 .... 3, are stochastically equal.
,q -,q q q

Next, we prove the preceeding statement. We need the following.

Lemma 5.1. Let us assume that Condition (1.12) holds. Then [T. ,E., I

and (Wl II are equal in distribution.

Proof. Let tc(O,=), and r = 1, ..., m. Then P(W1>t,A 1 r) a

•P(t<[&CX., r(O),r)] -1 ul<[hi X. ,1 (O),Y-)]-l-u,'r+Z-l... ml= P(T,l>tc . or).

- AM

[ ,'



We are ready now to prove the main result of this section.

Theorem 5.2. Let u~s assume that Condition (1.12) holds. Then the two

sequences LT q, q=l, 2 ... J and [1 ,Aq,q=l,2,... , are stochastically equal.
q I i C q

Proof. We have to show that for all k = 1, 2, ..., the rye's

[T w ,, q=l,...ki, LW ,q ,q=l ...,k] are equal in distribution. We prove this

statement by an inductior, arguement on k.

First, we present some notation. Let t = 1, ....m, Z(t,t) = Z(t+W1) ,

tc(O,-), Zr (O,) = Zr (0), tr = 1, ... , in, and Z 1 , ) = (0) + 1. Further,

let Wk(Z), Xk(1), be defined as W k, Ak' respectively, k = 1, 2 ..... where

Z(t,1) replaces Z(t). Finally, let X(tj), tc(O,=), be a ,n-dimensional

stochastic process as defined in Section 2 such that X. r(Uj) = X- (0),

tr 1, .... in, X,,1(0,) X ,l(0 ) + 1, and let T_ k(f)' ,k() , k = 1, 2,

be the interinfection times and infection causes associated with X.(t,).

We now return to the proof of the theorem. Let k = 2, 3, ..., and tE(0,-).

By the memoryless property of exponential rva's the two conditional rye's

{ITq 'q, jq=2 ...,k]IT® =t,- =Z) and [EW ,X ,q=2 ... k}IW =t,)l=l, are

equal in distribution to the two rye's LT.q(1), q(Z),q-l,....k-l] and

Wq (e), q(),q=l,...,k-l1 respectively. Consequently the result of the theorem

follows by Lemma 5.1, Bayes formula, and an induction arguement on k. 11

For reference purpeses wie summarize the main result of this section in the

following theorem.

Theorem 5.3. Let us assume that the transition rates of the m-dimensional

process X (t), tE[O,), are given by Equation (1.12). Then Statements (1.13),

(1.14) hold.

I
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6. Examples.

Now we apply the theory developed in the Frevious sections to some

specific m-dimensional simple epidemic classes. Throughout we assume that

Condition (1.7) holds.

Following the classical approach to the univariate simple epidemic

LBailey (1975). one can assume that the transition rates of X (t) are propor---n

tional to the number of infcctives with the respective diseases and the total

number of susceptibles. Let a1, ... . a m(O,-). Then the transition rates of

the classical m-dimensional simple epidemic are given by

(6.1) R(X (t),r) = ar X n,r(t)(n-X n(t)+X n(0)), r = 1, ... , m , tE[O,®).

Froi Lemmas 2.2, 2.3 the duration time of a classical m-dimensional simple

epidemic is less than or equal to [min{ar :r=ll (X (0)+q-.)- (n-q+l)]-

Thus, the duration time tends to zero as n . Consequently the classical

models are not describing properly the progress of the epidemic when n is

large. BLL(1979) adjust the classical transition rates and use the symmetric

m-dimensional simple epidemic to discribe the progress of the epidemic when n

is large. There is no apparent reason for the various transition rates to

have the same proportionally coefficient, as is assumed by BLL(1979). We

modify those transition rates, given by Equation (1.11), and assume that for

tc[O,-), and r = 1, ..., m

(6.2) R(X n (t),r) a I r n - Xn , r (t)(n-X n (t)+Xn (0)), n 1 1, 2,
(X6 2(t) ,tn)rnr.

Next, we derive for the models determined by Equation (6.2) the desired

approximations. Let V(byt) = max(k: k * 1,2q... ik (b~q-1)- UYt)q~ q

• At
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b =1, 2, ... , t, yE(O,-). For the sake of completeness we present the

following definition.

Definition 6.1. 've say that a rva 1,: is negative binomial with parameters
a+k-l]

a 1, 2, .... and pc(0,l), and write 'W-NB(a,p) if P{W=k}= I a- J pa(P( - P ) '

k 1, 2.....

Note that by BLL(1979) p. l8 we obtain that

(6.3) V(L,y,t)%NB(b,e-Yt ), b = 1, 2, ... , t, yg(O,).

We show next that for all tc(O,-), and r = 1, ... m,

m -at
(6.4) tim Pn k(t) = r1 P{Ni3(X (O),e r )=k 1, and

n7Wnk r=l . ,r r

(6.5) iM Pn,k,r(t) = P{NB(X. (O),e )=k .
n-- kr

Note that Conditions (1.9) and (1.12), with L(k,r) = trk, hold. Consequently

Statements (6.4), (0.5) follow by Theorems 4.3, 5.3, and Statement (6.3).

Finally, we show that for tc(O,®), r = 1, ..., m

cit
(6.6) tim EX = Xr(O)(e -1), and that

n)w n,r ,r

2a t ct
(6.7) tim Var{X (t)) = X. (O)(e r -e r).

ri-I'M n,r r

In particular we obtain from Statements (6.6), (6.7), that for all tE(O,-)

c t
(6.8) tin, EX (t) = [iX (O)(e r -1), and

n-ow n r~ -,r2a t art

(6.9) tim Var{Xn(t)} = X,(O) (er -e).

To prove Statements (6.6), (6.7), let 3 = 7m Then for all tc(O,) and

almost all nc{1,2,...)P{Xn(t)>k+Xn (0)} 5 p{;k. [n- 1 (n-q+l) (Xn (0)*q-l)] 1lUq !-t) <

z PV(X"O),O',t)?k), k * 0, 1, .... Thus, Conditions (1.9), (1.10), hold for

I



all t, BE(G,w), with Y(t) = V(X (O),a,t). Consequently Statements (6.6),

(6.7), follow from Theoreii. (4.6), (5.3), State:nent (6.3), and some simple

moments evaluations of negative binomial rv 's.

Frequently infectives are denied the freedom of movement, as is the case

when they are hospitaliied immediately after they contract a disease. We

describe the progress of this epidemic by an m-dimensional stochastic process

determined by the following trcilsition rates:

( n X ( t ) ( - t + 0 ) I ( t ) j '- , n = 1 , 2 . . . ,

(6.10) R(X n(t),r) 
n

r , [ , 1  , n=,r=l .m

Naw, we derive for the models dtor-.::in -d by Equation (6.10) the desired approy-

i1 a 2 k m -iimations. Let -1z (l-z) d , znd (k l , .... km) k![ l k r0 r=l

ki  ... , k {CI, ..1, k M= k i For th.: sake of simplicity we obtain these
' m r

approximations only for the symmetric case: when aI = a 2 ... = am = a. By Lemma

(2.1) it follows that for k = 1, 2,

[a (X . (0)+d Vk T

(6.11) P( . =t ~ 7q',..k r

,c' q d r(k) JI
Id1)....dm(k) k , where .i , ... , '-k E and

dr (k) = yk I(t =r), r , ... , m.r q1 q

By Lemma 2.2 we conclude that the interinfection times: TI, Too,2 , are
-I

lid exponential rva's with a me equal to a independent of the infection

causes: &, ' ,2 ... . In particular note that X (t) - X,(O) is a Poisson

rva with parameter at, tc(O,). Thus, for tE(O,-), and r 1, ... , m

AkI
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-cit s~k m X. (0) +k-1frol -a ()(6.12) P (t) = [e (a't) r P, ' k

jX.(I.sk rjj~
S(s(k)) ! (k) , and

(6.13) P k,r(t) = e-at(at)Xk o r(O),Xs (0)- r(O)).

.1-1q--(at)qsx ( 0,rO)+k 'X(O)-X ,r(O)+q)(q)- =
X ()I . x(o)-x. 0-

B-1 (Xr (0),X.(O)-X ,r(O)1 r (1-z) c c 'r(0)-i

• (atz) keatz (kf) -ldz

Since, Condition (1.8) holds we obtain by Theorem 4.3 and Corollary 4.4 that

Pn(t), Pn (t) can be approximate respectively by P (t), P (t), given
_~ n,k,r ,kkr

by Equations (6.12), (6.13).

Next, note that for te(0,®) and all nc{1,2,...IP{Xn (t)-k+Xn (0)}:p(k = T,  at},

k = 0, 1 ..... Thus, Conditions (1.9), (1.10) hold for all t, tE(O,=), with

Y(t) being a Poisson rva with mean at, tE(O,-). Consequently by Theorem 4.6

and Statement (6.12) we obtain for tE(O,m) and r = 1, ... , m, that

(6.14) Lim EX (t) = atX (O)X- (0), and that
w nr ,r

(6.15) tim Var{X n,r(t)) = atX r(O)X. I ( 0 ) +

+ a2 t 2X (0) (X0 (O)-X (0)) -1 ( 0 ) .
wmr r ) 4 0).

Further, by Theorem 4.5 we obtain that for tc (0,,)

(6.16) Lir EXnCt) n at and tim Var{X n(t)) * at.
n nw



Next, we consider m-dimensional simple epidemic models given by the

following transition rates

ar n (X t (n-Xn(t).X , n = 1, 2,...,
(6.17) R(Xn (t),r) = nr) ( ))

{ r ,(t) n

where 3,6E(O,a), r = 1, ... m.

The m-dimensional simple epidemic models determined by Equation (6.17)

generalize univariate simple epidemic models used and motivated by Severo

(1969). Note that Conditions (1.8) and (1.12), with A(kr) = r k, hold.' r

Cons.quently by Theorems 4.3, 5.3, we obtain for tE(O,), r = 1, ..., m, that

(6.18) Zim P (t) = P{jk= (X., (0)+q-l)-6U :a t},
nkr q1 rq r

and that
m

(6.19) Zim Pn,k(t) = rl Zim P n,k r(t).
--, r=ln- r

Let W(t) = max{k:q 1 (X0,(O)+q-1) U q< t. Then for all tc(O,') and almost

all nc{1,2 .... }P{X n(t)k+X n(O)1 P{W(t) k}, k = 0, 1, .... Thus, Conditions

(1.9), (1.10), hold for all t, OE(O,-), with Y(t) = W(t). Consequently the

moments approximations hold for the models determined by Equation (6.17).

Finally following Gart (1968), (1972), consider a population of sus-

ceptibles exposed to a disease and partitioned to m subpopulations. Gart

assumes that the susceptibility level of an individual varies according to

his membership in the various subpopulations. With small adjustments the

process X n(t) can be used to describe the progress of this univariate simple

epidemic. In this case the components of X (t) represent the number of in-

fectives in the respective subpopulations at time t measured from T0. Further,

all the results obtained in this paper carry through for these univariate models.



21

References.

(1) Bailey, N.T.J. (1975). The mathematical theory of infectious diseases.
Hafner, New York.

(2) Billard, L., Lacayo, 11. and Langberg, N.A. (1979). The symmetric
m-dimensional simple epidemic model J.R.S.S. Vol. 41, 196-202.

(3) (1980). Generalizations of
the simple epidemic process. J. App. Prob. Dece.

(4) Billingsley, P. (1968). Convergence of probability measures. John Wiley
and Sons, New York.

(5) Barlow, R. and Proschan, F. (1975). Statistical theory of reliability
and life testing probability models. Holt, Rinehart and Winston.

(6) Gart, J.J. (1968). The mathematical analysis of an epidemic with two
kinds of susceptibles. Biometrics, 24, 557-566.

(7) (1972). The statistical analysis of chain binomial epidemic

models with several kinds of susceptibles. Biometrics, 28, 921-930.

(8) Lobve, M. (1963). Probability theory. D. Van Nostrand Co.

(9) Severo, N.C. (1969). Generalizations of some stochastic epidemic models.
Math. Biosci. 4, 395-402.

V%'I- --



ecur>,ty Classification of this Page

REPORT ,OCU-E *.TAT If).' PA;E

1. REPORT MIJBERS 2. GOVT. ACCESSION .10. 3. RECIPIENT"; C.\TALO1G :aUnL5rP

FSU No. tI485(R

USARO No. --44-

4. TITLE 5. TYPE OF REPORT & PERIOD COVE lU

The Construction and Asymptotic Behaviour of Technical Report

Sorre m-Dimensional Simple Epidemic 'lodels 6. PERFORNING ORG. REPORT ::13ri\

FSU Statistics Report "14o, 5(R"

7. AUTIIOR(s 8. CONTRACT O1' GRANT NW£,IBER(s

aftali A. Langberg USARO DAA29-79-CO158

9 PE1RFORMIIG ORGANIZATION :WIME & ADDRESS 10. PROGRA11 ELEMENT, PROJECT,
TASK AREA AND UIORK UNIT NOS.

The Florida State University

Department of Statistics
Tallahassee, Florida 32306

ii. CONTROLLING OFFICE NAMIE & ADDRESS 12. REPORT DATE

U.S. Army Research Office - Durham February 1980

P.O. Box 12211 13. NLIBER OF PAGES
Research Triangle Park, North Carolina 27709

21
14. TONITORING AGENCY NAME & ADDRESS 15. SECURITY CLASS (of this report

(if different from Controlling Office" Unclassified

15a. DECLASSIFICATION/DOWNGRAD LrNG

SCHEDULE

16. DISTRIBUTION STATEIENT (of this Report)

Approved for public release: distribution unlimited.

iP. DISTRIBUTION STATMIENT (cf the abstract, if different from Report

18. SUPPLEIIENTARY NOTES

19. KLY UIORDS

n-dimensional simple epidemics, exponential, negative binomial and Poisson random

variables, stochastic processes and convergence in distribution

20. ABSTRACT

A population of susceptible individuals exposed to m contagious diseases is

considered. The progress of this epidemic among the individuals is modeled by an

m-dimensional stochastic process. The components of this process represent the

number of infective indivicuals with the respective diseases at time t.

A class of m-dimensional stochastic processes is constructed. These processes

describe the progress of the epidemic models considered in the sequel. Exact and

approximate formulas for the joint and marginal state probabilities of these models

are obtained. It is shown that the approximate formulas are relatively simple

functions of time while, the derivations ef the exact formulas involve tedious

computations. The results obtained in the paper are applied to a sample of examples.

• i i | i i
2$



DI


